Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
China Journal of Orthopaedics and Traumatology ; (12): 282-284, 2008.
Article in Chinese | WPRIM | ID: wpr-307031

ABSTRACT

<p><b>OBJECTIVE</b>To explore the adhesion,proliferation and osteodifferentiation of bone mesenchymal stem cells (BMSCs)on the prepared lactic acid/glycolic acid/asparagic acid-co-polyethylene glycol(PLGA-[ASP-PEG])tri-block polymer scaffolds.</p><p><b>METHODS</b>Modified PLGA with polyethylene glycol (PEG) and asparagic acid(ASP)that has many liga nds,and then the synthesis PLGA-[ASP-PEG] tri-block polymer material was prepared. BMSCs were cultured in PLGA-[ASP-PEG] polymer material and poly lactic acid-co-glycolic acid(PLGA)were used as control group. Precipitation method, MUT assay and total cellular protein detection were used to test the adhersion and proliferation of BMSCs. After the third generation of BMSCs was cultured on PLGA-[ASP-PEG] tri-block polymer scaffolds for 14 day and 28 day with osteogenic supplements,the osteodifferentiation of MSCs were observed through alkaline phosphatase(ALP) staining and calcium tubercle staining.</p><p><b>RESULTS</b>BMSCs grew adherent to the surface of PLGA-[ASP-PEG] polymer scaffolds and the number of BMSCs was much higher than that of PLGA. The precipitation method suggested that adhesion and proliferation of BMSCs on the surface of PLGA-[ASP-PEG] was much higher than the control group (P < 0.05). MTU assay showed that after BMSCs were cultured for 20 days,the absorbance A of PLGA-[ASP-PEG] polymer scaffolds and PLGA were 1.336 and 0.780 respectively. Total cellular protein could image the adhersion and proliferation of BMSCs indirectly. After BMSCs were cultured for 12 days,the total cellular protein of PLGA-[ASP-PEG] and PLGA were 66.44 microg/pore and 41.23 microg/pore respectively. PLGA-[ASP-PEG] polymer scaffolds had well biocompatibility and cell adhersion. The positive results with ALP staining and calcium tubercle staining in both groups indicated tri-block polymer scaffold and its degradations had no effect on osteodifferentiation.</p><p><b>CONCLUSION</b>PLGA-[ASP-PEG]could improve the adhesion and proliferation of seed cells on bone-matrixmaterial, maintain the morphous of seed cells and had no obvious effect on cell osteodifferentiation.</p>


Subject(s)
Animals , Female , Male , Rats , Aspartic Acid , Chemistry , Bone and Bones , Cell Biology , Cell Adhesion , Cell Differentiation , Cell Proliferation , Lactic Acid , Chemistry , Mesenchymal Stem Cells , Cell Biology , Polyethylene Glycols , Chemistry , Polyglycolic Acid , Chemistry , Rats, Sprague-Dawley , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL